当前位置:首页 > 教学资料 > 说课稿

高二数学说课稿

时间:2024-08-04 18:49:13
高二数学说课稿

高二数学说课稿

作为一位不辞辛劳的人民教师,有必要进行细致的说课稿准备工作,是说课取得成功的前提。那么说课稿应该怎么写才合适呢?以下是小编收集整理的高二数学说课稿,希望对大家有所帮助。

高二数学说课稿1

1、教学目标

1、知识与技能

(1)正确理解样本数据标准差的意义和作用,学会计算数据的标准差。

(2)能根据实际问题的需要合理地选取样本,从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释。

(3)会用样本的基本数字特征估计总体的基本数字特征。

(4)形成对数据处理过程进行初步评价的意识。

2、过程与方法

在解决统计问题的过程中,进一步体会用样本估计总体的思想,理解数形结合的数学思想和逻辑推理的数学方法。

3、情感态度与价值观

会用随机抽样的方法和样本估计总体的思想解决一些简单的实际问题,认识统计的作用,能够辨证地理解数学知识与现实世界的联系。

2重点难点

重点:用样本平均数和标准差估计总体的平均数与标准差。

难点:能应用相关知识解决简单的实际问题。

3教学过程3.1第一学时评论(0) 新设计

【创设情境】

在一次射击比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕

甲运动员﹕7,8,6,8,6,5,8,10,7,4;

乙运动员﹕9,5,7,8,7,6,8,6,7,7.

观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?为了从整体上更好地把握总体的规律,我们要通过样本的数据对总体的数字特征进行研究。——用样本的数字特征估计总体的数字特征(板出课题)。

【探究新知】

、众数、中位数、平均数

〖探究〗:P62

(1)怎样将各个样本数据汇总为一个数值,并使它成为样本数据的“中心点”?

(2)能否用一个数值来描写样本数据的离散程度?(让学生回忆初中所学的一些统计知识,思考后展开讨论)

初中我们曾经学过众数,中位数,平均数等各种数字特征,应当说,这些数字都能够为我们提供关于样本数据的特征信息。例如前面一节在调查100位居民的月均用水量的问题中,从这些样本数据的频率分布直方图可以看出,月均用水量的众数是2.25t(最高的矩形的中点)(图略见课本第62页)它告诉我们,该市的月均用水量为2. 25t的居民数比月均用水量为其他值的居民数多,但它并没有告诉我们到底多多少。

〖提问〗:请大家翻回到课本第56页看看原来抽样的数据,有没有2.25这个数值呢?根据众数的定义,2.25怎么会是众数呢?为什么?(请大家思考作答)

分析:这是因为样本数据的频率分布直方图把原始的一些数据给遗失的原因,而2.25是由样本数据的频率分布直方图得来的,所以存在一些偏差。

〖提问〗:那么如何从频率分布直方图中估计中位数呢?

分析:在样本数据中,有50%的个体小于或等于中位数,也有50%的个体大于或等于中位数。因此,在频率分布直方图中,矩形的面积大小正好表示频率的大小,即中位数左边和右边的直方图的面积应该相等。由此可以估计出中位数的值为2.02。(图略见课本63页图2.2-6)

〖思考〗:2.02这个中位数的估计值,与样本的中位数值2.0不一样,你能解释其中的原因吗?(原因同上:样本数据的频率分布直方图把原始的一些数据给遗失了)

课本63页图2.2-6)显示,大部分居民的月均用水量在中部(2.02t左右),但是也有少数居民的月均用水量特别高,显然,对这部分居民的用水量作出限制是非常合理的。

〖思考〗:中位数不受少数几个极端值的影响,这在某些情况下是一个优点,但是它对极端值的不敏感有时也会成为缺点,你能举例说明吗?(让学生讨论,并举例)

、标准差、方差

1.标准差

平均数为我们提供了样本数据的重要信息,可是,有时平均数也会使我们作出对总体的片面判断。某地区的统计显示,该地区的中学生的平均身高为176㎝,给我们的印象是该地区的中学生生长发育好,身高较高。但是,假如这个平均数是从五十万名中学生抽出的五十名身高较高的学生计算出来的话,那么,这个平均数就不能代表该地区所有中学生的身体素质。因此,只有平均数难以概括样本数据的实际状态。

例如,在一次射击选拔比赛中,甲、乙两名运动员各射击10次,命中环数如下﹕

甲运动员﹕7,8,6,8,6,5,8,10,7,4;

乙运动员﹕9,5,7,8,7,6,8,6,7,7.

观察上述样本数据,你能判断哪个运动员发挥的更稳定些吗?如果你是教练,选哪位选手去参加正式比赛?

我们知道,。

两个人射击的平均成绩是一样的。那么,是否两个人就没有水平差距呢?(观察P66图2.2-8)直观上看,还是有差异的。很明显,甲的成绩比较分散,乙的成绩相对集中,因此我们从另外的角度来考察这两组数据。

考察样本数据的分散程度的大小,最常用的统计量是标准差。标准差是样本数据到平均数的一种平均距离,一般用s表示。

样本数据的标准差的算法:

(1)、算出样本数据的.平均数。

(2)、算出每个样本数据与样本数据平均数的差:

(3)、算出(2)中的平方。

(4)、算出(3)中n个平方数的平均数,即为样本方差。

(5)、算出(4)中平均数的算术平方根,,即为样本标准差。

其计算公式为:

显然,标准差较大,数据的离散程度较大;标准差较小,数据的离散程度较小。

〖提问〗:标准差的取值范围是什么?标准差为0的样本数据有什么特点?

从标准差的定义和计算公式都可以得出:。当时,意味着所有的样本数据都等于样本平均数。

(在课堂上,如果条件允许的话,可以给学生简单的介绍一下利用计算机来计算标准差的方法。)

2.方差

从数学的角度考虑,人们有时用标准差的平方(即方差)来代替标准差,作为测量样本数据分散程度的工具:

在刻画样本数据的分散程度上,方差和标准差是一样的,但在解决实际问题时,一般多采用标准差。

【例题精析】

〖例1〗:画出下列四组样本数据的直方图,说明他们的异同点。

(1)5,5,5,5,5,5,5,5,5

(2)4,4,4,5,5,5,6,6,6

(3)3,3,4,4,5,6,6,7,7

(4)2,2,2,2,5,8,8,8,8

分析:先画出 ……此处隐藏33123个字……材的地位与作用:本节课要讲的是正、余弦函数的性质,它是历年高考的重点内容之一,在高考中常以选择题、填空题的形式出现。有时与其它三角变换、函数的一般性质综合。考查灵活,常有创新性。这就要求我们注意运用三角函数的性质培养学生善于运用三角函数的性质解决问题。因此,学好这节课不仅可以为我们今后学习正切、余切函数的性质打下基础,还可以进一步提高学生分析问题和解决问题的能力,它对知识起到了承上启下的作用。

2、教学目标的确定:根据教参及教学大纲的要求,依据教学目的以及学生的实际情况,制定如下的教学目标:

(1)知识目标:正、余弦函数的性质及应用(定义域、值域、最大、最小值、奇偶性、单调性)

(2)能力目标:

a:掌握正、余弦函数的性质;

b:灵活利用正、余弦函数的性质

(3)德育目标:

a:渗透数形结合的思想

b:培养联合变化的观点

c:提高数学素质

3、教学重点和难点的确定及依据;

由于正、余弦函数的主要性质在本节中有着重要的地位。因此,成为本节课的重点,在教学中,单调性、奇偶性和周期性是学生第一次接触的三个概念,而函数的单调性、奇偶性以及周期函数,周期,最小正周期的意义是本节教学中学生第一次接触的内容。这在学生的基础上理解有一定的难度。因此成为本节课的难点。那么克服本节课的难点的关键在于复习好正、余弦函数图象的意义,充分利用图形讲清正、余弦函数的特点,梳理好讲解顺序,使学生通过适当的练习正确理解概念、图象、特性、实现教学目标和进一步提高学生的学习探索能力,充分发挥学生的主体作用。

二:教材处理:

正、余弦函数的性质,其中定义域、值域、最大值、最小值,学生以前已接触过,所以只需简单提示。但是单调性,奇偶性,周期性是学生第一次接触到的,考虑到学生的基础参差不齐,接受能力不同,因此在教学中要顾全局,耐心讲解,并通过适当的教具启发调动学生的主观能动性。

三、教学方法和手段:

1、教学方法:启发诱导式教学方法,为增强图象的形象直观性,增大教学内容,提高效率。我利用计算机软件,在此基础上,学生运用观察法、发现法、学习法、归纳法以及练习法进行学习,在教学过程中,首先我以习提问形式引入课题,意义使学生利用类比思想,认识到研究三角函数的方向所在,减少盲目性。为了有利于学生正确了解正、余弦图形的性质,我又指导了学生复习正、余弦函数的图象。再从介绍图象的特点让学生观察、发现、归纳函数的性质。同时结合不同例子巩固所学的知识,训练学生的知识应用能力。软件辅助教的充分利用使得教学生动而有条理,使学生认识到数归思想、数形结合在学习知识中的作用。

2、教学手段:根据本节课的特点,要在正、余弦函数的图象的基础上操作性质,所以有条件的话不防可用动画的形式表现,给学生一种直观形象,不仅激发了学生的创造性思维能力,更起到了事半功倍的效果。

四、教学过程:

1、复习导入:

通过复习已学过的正、余弦函数的图象,不妨叫学生自己作图,这样不仅复习了上节课的五点作图法,还可以引出新课,正、余弦函数的性质

2、新课

a:打出多媒体课件,不妨叫学生自己观察正、余弦函数的图象,定义域和值域,最大值,最小值,学生应该都能观察出来,只须稍微强调一下。

b:周期函数的定义:可有诱导公式sin(x+2kn)=sinx

得出函数值是按一定的规律重复取的,给出定义,讲解定义时,要特别强调“作零常数t”,及“对于定义域的每一值,都要有f(x+t)=f(x)成立,也就是说,如果在定义域内的每一个值使得f(x+t)=f(x)成立。非零常数t就是周期了,不妨举一个例子,是否正弦函数的周期,sin(n/2+x)是否等于sin(x)还应强调并不是所有的.函数都会有最小正周期。

c:奇偶性:在讲解定义时,应该强调,在判断函数是否为奇偶函数时,必须先看其定义域是否关于原点对称,后再由f(x)=f(-x)或f(-x)=-f(x),也就是说,定义域关于原点对称,一个函数有奇偶性的必要条件,还应强调并不是所有的函数都有奇偶性,但也有函数既是奇函数,也是偶函数。可以举例说明:奇函数一定关于原点对称,偶函数一定关于y轴对称。反之也成立。

d:在讲解周期性、奇偶性、单调性时可有多媒体课件实现。

(1)、对称轴:y=sinx的对称轴是x=kn+n/2;y=cosx的对称轴是x=kn;对称性;

(2)对称中心:y=sinx的对称中心是(kn,0)y=cosx的对称中心是(kn+n/2,0)

当y=sinxx∈[-n/2+2kn,n/2+2kn]时,曲线逐渐上升,y的值由-1逐渐增加到1;

单调性x∈[n/2+2kn,n/2+2kn]时,曲线逐渐下降,y的值由1逐渐减少到-1;

当y=cosxx∈[-n+2kn,2kn]时,曲线逐渐上升,y的值由-1逐渐增加到1;

x∈[2kn,n+2kn]时,曲线逐渐下降,y的值由1逐渐减少到-1;

五、例题讲解:

例1:

cos(-23n/5)-cos(-17n/4)

问:能否求出上式的值?能否求出其值比0大还是小?须运用我们这节课所学的哪部分知识?

求上式的值大于0还是小于0?

∵y=cosx是偶函数,∴原式为cos(23n/5)-cos(17n/4)

可知cos(23n/5)

即cos(-23n/5)-cos(-17n/4)<0

例2:y=√sinx+1

提出问题:学生能提出什么问题?

教师引导:上式有没有最大值,最小值,值域,什么时候取得最大值?什么时候取得最小值?奇偶性如何?能不能画出它的图象?图象与y=cosx有什么关系?

求取的最大值的x的值所有集合。

当x取最大值时的取值为x=kn+n/2(k∈r)

即取的最大值的x的值的所有集合为[x∣x=kn+n/2(k∈r)]

例3:y=√sinx的定义域。

由0≦sinx≦1可得:

x的定义域为:2kn≦x≦&pro

d;+2kn(k∈r)

即x的定义域为[2kn,n+2kn](k∈r)

问:可不可以求值域?有没有奇偶性?如果有的话,是奇函数还是偶函数?

拓展:求上式函数的奇偶性。一般来讲,学生会用定义法求出上式既不是奇函数,也不是偶函数。

结果:上式既不是奇函数,也不是偶函数。

问:为什么呢?

强调:函数有奇偶性的必要条件是定义域关于原点对称。

六、课堂小结:

通过本节学习,要求掌握正、余弦函数的性质以及性质的简单应用,解决一些相关问题。

七、作业布置:

使学生通过作业进一步掌握和巩固本节内容

《高二数学说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式