《比的应用》教学设计
作为一位兢兢业业的人民教师,就不得不需要编写教学设计,借助教学设计可以提高教学效率和教学质量。教学设计应该怎么写呢?以下是小编整理的《比的应用》教学设计,希望对大家有所帮助。
《比的应用》教学设计1一、素质教育目标
(一)知识教学点:使学生会用列一元二次方程的方法解有关数与数字之间关系的应用题。
(二)能力训练点:通过列方程解应用问题,进一步提高分析问题、解决问题的能力。
二、教学重点、难点
1、教学重点:会用列一元二次方程的方法解有关数与数字之间的关系的应用题。
2、教学难点:根据数与数字关系找等量关系。
三、教学步骤
(一)明确目标
(二)整体感知:
(三)重点、难点的学习和目标完成过程
1、复习提问
(1)列方程解应用问题的步骤?
①审题,
②设未知数,
③列方程,
④解方程,
⑤答。
(2)两个连续奇数的表示方法是,2n+1,2n-1;2n-1,2n-3;……(n表示整数)。
2、例1两个连续奇数的积是323,求这两个数。
分析:
(1)两个连续奇数中较大的奇数与较小奇数之差为2,
(2)设元(几种设法)。设较小的奇数为x,则另一奇数为x+2,设较小的奇数为x-1,则另一奇数为x+1;设较小的奇数为2x-1,则另一个奇数2x+1。
以上分析是在教师的引导下,学生回答,有三种设法,就有三种列法,找三位学生使用三种方法,然后进行比较、鉴别,选出最简单解法。
解法(一)
设较小奇数为x,另一个为x+2,据题意,得x(x+2)=323。
整理后,得x2+2x-323=0。
解这个方程,得x1=17,x2=-19。
由x=17得x+2=19,由x=-19得x+2=-17,答:这两个奇数是17,19或者-19,-17。
解法(二)
设较小的奇数为x-1,则较大的奇数为x+1。
据题意,得(x-1)(x+1)=323。
整理后,得x2=324。
解这个方程,得x1=18,x2=-18。
当x=18时,18-1=17,18+1=19。
当x=-18时,-18-1=-19,-18+1=-17。
答:两个奇数分别为17,19;或者-19,-17。
解法(三)
设较小的奇数为2x-1,则另一个奇数为2x+1。
据题意,得(2x-1)(2x+1)=323。
整理后,得4x2=324。
解得,2x=18,或2x=-18。
当2x=18时,2x-1=18-1=17;2x+1=18+1=19。
当2x=-18时,2x-1=-18-1=-19;2x+1=-18+1=-17
答:两个奇数分别为17,19;-19,-17。
引导学生观察、比较、分析解决下面三个问题:
1、三种不同的设元,列出三种不同的方程,得出不同的x值,影响最后的结果吗?
2、解题中的x出现了负值,为什么不舍去?
答:奇数、偶数是在整数范围内讨论,而整数包括正整数、零、负整数。
3、选出三种方法中最简单的一种。
练习
1、两个连续整数的积是210,求这两个数。
2、三个连续奇数的和是321,求这三个数。
3、已知两个数的和是12,积为23,求这两个数。
学生板书,练习,回答,评价,深刻体会方程的思想方法。例2有一个两位数等于其数字之积的3倍,其十位数字比个位数字小2,求这两位数。
分析:数与数字的关系是:
两位数=十位数字×10+个位数字。
三位数=百位数字×100+十位数字×10+个位数字。
解:设个位数字为x,则十位数字为x-2,这个两位数是10(x-2)+x。
据题意,得10(x-2)+x=3x(x-2),整理,得3x2-17x+20=0,
当x=4时,x-2=2,10(x-2)+x=24。
答:这个两位数是24。
练习1有一个两位数,它们的十位数字与个位数字之和为8,如果把十位数字与个位数字调换后,所得的两位数乘以原来的两位数就得1855,求原来的两位数。(35,53)
2、一个两位数,其两位数字的差为5,把个位数字与十位数字调换后所得的数与原数之积为976,求这个两位数。
教师引导,启发,学生笔答,板书,评价,体会。
(四)总结,扩展
1、奇数的表示方法为2n+1,2n-1,……(n为整数)偶数的表示方法是2n(n是整数),连续奇数(偶数)中,较大的与较小的差为2,偶数、奇数可以是正数,也可以是负数。
数与数字的关系
两位数=(十位数字×10)+个位数字。
三位数=(百位数字×100)+(十位数字×10)+个位数字。
……
2、通过本节课内容的比较、鉴别、分析、综合,进一步提高分析问题、解决问题的能力,深刻体会方程的思想方法在解应用问题中的用途。
四、布置作业
教材P.42中A1、2、
《比的应用》教学设计2课题:比的应用
教学内容:义务教育课程标准小学数学六年级上册第三单元《比的应用》
教学目标:1、让学生了解比在生活中的广泛应用,使学生掌握按比分配应用题的结构特点和解题思路,能运用这个知识来解决一些日常工作、生活中的实际问题。
2、培养学生运用已有知识进行分析、推理等思维能力,以及自主探究解决问题的实践能力。
3、使学生树立用自己学来的知识解决问题的意识,培养学生认真审题、独
立思考、自觉检验的好习惯,增强学生学好数学的信心。
教学重点:掌握按比分配应用题的结构特点和解题思路。
教学难点:正确分析,灵活解决按比分配的实际问题。
教学准备:教学课件卡片
教学过程:
一、复习导入
1、复习求一个数的几分之几是多少的实际问题。
2、由分卡片时所产生的问题设疑导入,激发学生学习兴趣。
二、讲授新课
1、教师提出关于稀释液的实际问题,引导学生理解“稀释液”的意思。
2、利用课件出示例2。
(1)学生读题,弄清题意。 ……此处隐藏14010个字……句子在每段中起到了什么作用?
3.在作者眼中四季最美的是什么时候?
4.把四个句子连在一起看,这四个句子构成了什么句式?
5.全文是按什么顺序额描写的?
6.回顾一下四个清晰的段落。
7.结合课文解释一下“情趣”的意思。
下面我们就再次走进课文看看课文时如何来写四时的情趣的?
三、精读品悟
(一)首先我们来看看当下的秋天在作者眼中是什么样的?
1.轻声读描写秋天的段落,看一看作者写出了秋天傍晚哪些地方有趣。找一找,画一画,品味一下其中的趣味。
2.学生汇报,师板书:秋天 傍晚 :乌鸦归巢,大雁南飞,风响虫鸣
师:(1)(多媒体展示乌鸦归巢的画面)我们如果把乌鸦归巢拟人化可以怎么说呢?
(2)大雁变得越来越小可以用几何中的变化来形容一下 ,是由什么变化成什么?
(3)寂静的夜里有了这些风响虫鸣,像是他们在做什么呢?
3.再读课文,看看哪些词或句子能体现出情趣。(生汇报)同时用自己的语言来描绘一下这样的情趣。
4.(多媒体出示这一段落,伴乐朗读)再出声读一读,不同形式的读,去深刻的体会这里面的情趣。
(二)总结学法:师生共同回顾第三自然段的学法进行总结:
读、找、品、诵
(三)自学
师:运用这种学法小组交流学习其他三个季节哪些地方有趣,哪些词、句能体现出情趣,找一找,画下了。
1.生汇报第一自然段:春 破晓 :漂横的紫色云(板书)
师:(1)(多媒体展示破晓的画面)文中都出现了哪些色彩?这些色彩描绘了一个怎样的早晨?
(2)哪个词最能体现出云的情趣?
(3)不同形式的读,想象画面的情趣所在(多媒体出示这一段落,伴乐朗读)
2.生汇报第二自然段:夏 夜里 :流萤(板书)
师:(1)(多媒体出示流萤的画面 )在这样黑夜里,闪闪发光的萤火虫,想象一下这些萤火虫像什么?用一些形象的词来比喻一下。
(2)哪个词最能体现出流萤是有趣的?用你的体会去读读这句话。
3.生汇报第三自然段:冬 早晨:生火送炭
师:在这样寒冷的冬天里人们忙碌着,还会寒冷了吗?会变得怎么样呢?想象一下人们在分炭时会有什么交流呢?
(多媒体出示此段,伴乐朗读)不同形式的朗读,体会这寒冷的冬天了的那份温暖的情趣。
四、回读赏析
欣赏过这些清淡,细小的画面后,再通读课文,你发现“四时”的情趣有什么不同吗?
五、续读升华
下面我们看看在我们的古代人是怎样用诗句描写四季的?大屏幕展示。
春 晓 [唐.孟浩然] 暮江吟 白居易
春 眠 不 觉 晓, 一道残阳铺水中,
处 处 闻 啼 鸟。 半江瑟瑟半江红。
夜 来 风 雨 声, 可怜九月初三夜,
花 落 知 多 少。 露似真珠月似弓。
西江月·夜行黄沙道中 白雪歌送武判官归京
辛弃疾 岑参
明月别枝惊鹊,清风半夜鸣蝉。 北风卷地白草折,
稻花香里说丰年,听取蛙声一片。 胡天八月即飞雪。
七八个星天外,两三点雨山前。 忽如一夜春风来,
旧时茅店社林边,路转溪桥忽见。 千树万树梨花开。
板书设计:
四时的情趣
时 春天 破晓:漂横的紫色云
间 夏天 夜里:流萤
顺 秋天 傍晚:乌鸦归巢,大雁南飞,风响虫鸣
序 冬天 早晨:生火送炭
《比的应用》教学设计15掌握数量关系是正确解答应用题的关键。有时应用题的解答也有技巧,下面我们一起来看看这样一道题。
李大伯跑1.5千米,用了11.7分钟。李大伯跑1千米平均需要多少分钟?
同学们都知道这道题是用除法计算,
那么是:1.5千米÷11.7分钟
还是:11.7分钟÷1.5千米呢?老师介绍几种方法。
一、同学们可以这样想:看要求的量的单位。这道题是求“多少分钟”,应把11.7分钟平均分到1.5千米里,看看每千米平均需要多少分钟,所以算式是:11.7分钟÷1.5千米。如果是求“李大伯平均每分钟跑多少千米”
算式为:1.5千米÷11.7分钟
二、同学们还可以这样想:把题中的小数转化成整数。“李大伯跑2千米,用了12分钟。李大伯跑1千米平均需要多少分钟?”很容易理解为:12分钟÷2千米
即解答方法为:时间除以路程
第三单元《长方体和正方体》 概念和公式归纳
姓名
一、概念:
1、两个面相交的边叫做棱。三条棱相交的点叫做顶点。相交于一个顶点的三条棱的长度分别叫做长方体的长、宽、高。
2、由6个长方形(特殊情况有两个相对的面是正方形)围成的立体图形叫做长方体。在一个长方体中,相对面完全相同,相对的棱长度相等。
3、由6个完全相同的正方形围成的立体图形叫做正方体(也叫做立方体)。正方体有12条棱,它们的长度都相等,所有的面都完全相同。
4、长方体和正方体的面、棱和顶点的数目都一样,只是正方体的棱长都相等,正方体可以说是长、宽、高都相等的长方体,它是一种特殊的长方体。
5、长方体或正方体6个面和总面积叫做它的表面积。
6、物体所占空间的大小叫做物体的体积。
7、容器所能容纳物体的体积通常叫做它们的容积。
8、a读作“a的立方”表示3个a相乘,(即aaa)
二、计算公式:
长方体公式:棱长和=(长+宽+高)×4
底面积(占地面积、横截面积、上面积)=长×宽
侧面积(左面、右面)=宽×高 前(后)面积=长×高
表面积=(长×宽+长×高+宽×高)×2
没盖的表面积=长×宽+(长×高+宽×高)×2
或=(长×宽+长×高+宽×高)×2-长×宽
体积(容积)=长×宽×高
长=体积÷宽÷高
宽=体积÷长÷高
高=体积÷长÷宽
体积(容积)=底面积×高
底面积=体积÷高高=体积÷底面积
正方体公式:
棱长和=棱长×12 棱长=棱长和÷12
表面积=棱长×棱长×6 (任意一个面积×6)
没盖的表面积=棱长×棱长×5
体积(容积)=棱长×棱长×棱长=底面积×棱长
三、体积单位换算:
高级单位化成低级单位乘进率
低级单位化成高级单位除以进率
进率: 1立方米=1000立方分米=1000000立方厘米
1立方分米=1000立方厘米=1升=1000毫升
1立方厘米=1毫升
文档为doc格式